
INFORMS Journal on Computing
Vol. 19, No. 3, Summer 2007, pp. 328–340
issn 1091-9856 �eissn 1526-5528 �07 �1903 �0328

informs ®

doi 10.1287/ijoc.1060.0175
©2007 INFORMS

Scatter Search and Local NLP Solvers: A Multistart
Framework for Global Optimization

Zsolt Ugray
Management Information Systems Department, Utah State University, Logan, Utah 84322,

zsolt.ugray@usu.edu

Leon Lasdon
Department of Information, Risk, and Operations Management, McCombs School of Business,

The University of Texas at Austin, Austin, Texas 78712, lasdon@mail.utexas.edu

John Plummer
Department of Computer Information Systems and Quantitative Methods, Texas State University,

San Marcos, Texas 78666, jp05@txstate.edu

Fred Glover
University of Colorado, Boulder, Colorado 80309, fred.glover@colorado.edu

James Kelly
OptTek Systems, Inc., Boulder, Colorado 80302, kelly@opttek.com

Rafael Martí
Departamento de Estadística e Investigación Operativa, University of Valencia,

46100 Burjassot, Valencia, Spain, rafael.marti@uv.es

The algorithm described here, called OptQuest/NLP or OQNLP, is a heuristic designed to find global optima
for pure and mixed integer nonlinear problems with many constraints and variables, where all problem

functions are differentiable with respect to the continuous variables. It uses OptQuest, a commercial implemen-
tation of scatter search developed by OptTek Systems, Inc., to provide starting points for any gradient-based
local solver for nonlinear programming (NLP) problems. This solver seeks a local solution from a subset of these
points, holding discrete variables fixed. The procedure is motivated by our desire to combine the superior accu-
racy and feasibility-seeking behavior of gradient-based local NLP solvers with the global optimization abilities
of OptQuest. Computational results include 155 smooth NLP and mixed integer nonlinear program (MINLP)
problems due to Floudas et al. (1999), most with both linear and nonlinear constraints, coded in the GAMS
modeling language. Some are quite large for global optimization, with over 100 variables and 100 constraints.
Global solutions to almost all problems are found in a small number of local solver calls, often one or two.

Key words : global optimization; multistart heuristic; mixed integer nonlinear programming; scatter search;
gradient methods

History : Accepted by Michel Gendreau, Area Editor for Heuristic Search and Learning; received August 2002;
revised January 2005, September 2005; accepted January 2006. Published online in Articles in Advance
July 20, 2007.

1. Introduction
This paper describes OQNLP, a multistart heuristic
algorithm designed to find global optima of smooth
constrained nonlinear programs (NLPs) and mixed
integer nonlinear programs (MINLPs). It uses the
OptQuest Callable Library (OCL) implementation of
scatter search (Laguna and Marti 2002) to generate
trial points, which are candidate starting points for
a local NLP solver. These are filtered to provide a
smaller subset from which the solver attempts to find
a local optimum. Our GAMS implementation can use
any GAMS NLP solver, and the stand-alone version

uses the generalized reduced gradient NLP solver
LSGRG2 (Smith and Lasdon 1992).
The most general problem this algorithm can solve

has the form
minimize f �x�y�� (1)

subject to the nonlinear constraints

gl≤G�x�y�≤ gu� (2)

and to the linear constraints

l≤A1x+A2y ≤ u (3)

x ∈ S� y ∈ Y � (4)

328



Ugray et al.: Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization
INFORMS Journal on Computing 19(3), pp. 328–340, © 2007 INFORMS 329

where x is an n-dimensional vector of continuous
decision variables, y is a p-dimensional vector of dis-
crete decision variables, and the vectors gl, gu, l, and
u contain upper and lower bounds for the nonlinear
and linear constraints, respectively. The matrices A1
and A2 are m2 by n and m2 by p, respectively, and con-
tain the coefficients of any linear constraints. The set
S is defined by simple bounds on x, and we assume
that it is closed and bounded, i.e., that each compo-
nent of x has a finite upper and lower bound. This
is required by the OptQuest scatter-search procedure.
The set Y is assumed to be finite, and is often the set
of all p-dimensional binary or integer vectors y that
satisfy finite bounds. The objective function f and the
m1-dimensional vector of constraint functions G are
assumed to have continuous first partial derivatives at
all points in S×Y . This is necessary so that a gradient-
based local NLP solver can be applied to the relaxed
NLP sub-problems formed from (1)–(4) by allowing
the y variables to be continuous.

2. Multistart Algorithms for Global
Optimization

In this section, which reviews past work on mul-
tistart algorithms, we focus on unconstrained prob-
lems where there are no discrete variables, since to
the best of our knowledge multistart algorithms have
been investigated theoretically only in this context.
These problems have the form of (1)–(4) with no
y variables and no constraints except the bounds
x ∈ S in (4). All global minima of f are assumed to
occur in the interior of S. By multistart we mean any
algorithm that attempts to find a global solution by
starting a local NLP solver, denoted by L, from mul-
tiple starting points in S. The most basic multistart
method generates uniformly distributed points in S,
and starts L from each of these. This converges to
a global solution with probability one as the num-
ber of points approaches infinity—in fact, the best
of the starting points converges as well. However,
this procedure is very inefficient because the same
local solution is located many times. A convergent
procedure that largely overcomes this difficulty is
called multilevel single linkage (MLSL) (Rinnooy Kan
and Timmer 1987a, b). MLSL uses a simple rule to
exclude some potential starting points. A uniformly
distributed sample of Ns points in S is generated,
and the objective f is evaluated at each point. The
points are sorted according to their f values, and
the qNs best points are retained, where q is an algo-
rithm parameter between 0 and 1. L is started from
each point of this reduced sample, except if there is
another sample point within a certain critical distance
that has a lower f value. L is also not started from
sample points that are too near the boundary of S, or

too close to a previously discovered local minimum.
Then, Ns additional uniformly distributed points are
generated, and the procedure is applied to the union
of these points and those retained from previous itera-
tions. The critical distance referred to above decreases
each time a new set of sample points is added. The
authors show that, if the sampling continues indefi-
nitely, each local minimum of f will be located, but
the total number of local searches is finite with proba-
bility one. They also develop Bayesian stopping rules,
which incorporate assumptions about the costs and
potential benefits of further function evaluations, to
determine when to stop the procedure.
When the critical distance decreases, a point from

which L was previously not started may become a
starting point in the next cycle. Hence all sample
points generated must be saved. This also makes the
choice of the sample size Ns important, since too
small a sample leads to many revised decisions,
while too large a sample will cause L to be started
many times. Random-linkage (RL) multistart algo-
rithms introduced by Locatelli and Schoen (1999)
retain the good convergence properties of MLSL, and
do not require that past starting decisions be revised.
Uniformly distributed points are generated one at a
time, and L is started from each point with a proba-
bility given by a nondecreasing function ��d�, where
d is the distance from the current sample point to
the closest of the previous sample points with a bet-
ter function value. Assumptions on this function that
give RL methods the same theoretical properties as
MLSL are derived in the above reference.
Recently, Fylstra et al. have implemented a ver-

sion of MLSL that can solve constrained problems
(http://www.solver.com/xlspremsolv3.htm). Limited
to problems with no discrete variables y, it uses the
L1 exact penalty function, defined as

P1�x�w�= f �x�+
m∑

i=1
wi viol�gi�x��� (5)

where the wi are nonnegative penalty weights, m =
m1 + m2, and the vector g has been extended
to include the linear constraints (4). The function
viol�gi�x�� is the absolute amount by which the ith
constraint is violated at the point x. It is well known
(Nash and Sofer 1996) that if x∗ is a local optimum of
(1)–(4), u∗ is a corresponding optimal multiplier vec-
tor, the second order sufficiency conditions are satis-
fied at �x∗�u∗� and

wi > abs�u∗
i �� (6)

then x∗ is a local unconstrained minimum of P1. If
(1)–(4) has several local minima, and each wi is larger
than the maximum of all absolute multipliers for con-
straint i over all these optima, then P1 has a local min-
imum at each of these local constrained minima. Even



Ugray et al.: Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization
330 INFORMS Journal on Computing 19(3), pp. 328–340, © 2007 INFORMS

though P1 is not a differentiable function of x, MLSL
can be applied to it, and when a randomly generated
trial point satisfies the MLSL criterion to be a starting
point, any local solver for the smooth NLP problem
can be started from that point. The local solver need
not make any reference to the exact penalty func-
tion P1, whose only role is to provide function val-
ues to MLSL. We will use P1 in the same way in our
OQNLP algorithm. We are not aware of any theoret-
ical investigations of this extended MLSL procedure,
so it must currently be regarded as a heuristic.

3. The OQNLP Algorithm
3.1. The Global Phase—Scatter Search
Scatter search (ScS) is a population-based meta-
heuristic algorithm devised to intelligently perform a
search on the problem domain (Glover 1998). It oper-
ates on a set of solutions called the reference set or
population. Elements of the population are maintained
and updated from iteration to iteration. ScS differs
from other population-based evolutionary heuristics
like genetic algorithms (GAs) mainly in its emphasis
on generating new elements of the population mostly
by deterministic combinations of previous members
of the population as opposed to the more extensive
use of randomization. ScS was founded on strategies
that were proposed as augmentations to GAs more
than a decade after their debut in ScS. It embodies
principles and strategies that are still not emulated by
other evolutionary methods and prove to be advan-
tageous for solving a variety of complex optimization
problems. For the most recent and complete descrip-
tion of ScS, see Laguna and Marti (2003). Also see
the Online Supplement to this paper on the journal’s
website.

3.2. The Local Phase—Gradient-Based NLP
Solvers

Many papers and texts discuss gradient-based NLP
solvers, e.g., Nash and Sofer (1996), Nocedal and
Wright (1999), and Edgar et al. (2001). These solve
problems of the form (1)–(4), but with no discrete �y�
variables. They require a starting point as input, and
use values and gradients of the problem functions
to generate a sequence of points that, under fairly
general smoothness and regularity conditions, con-
verge to a local optimum. The main classes of algo-
rithms in widespread use are successive quadratic
programming (SQP) and generalized reduced gradi-
ent (GRG); see Edgar et al. (2001, chapter 8). The algo-
rithm implemented in the widely used MINOS solver
(Murtagh and Saunders 1982) is similar to SQP. If
there are nonlinear constraints, SQP and MINOS gen-
erate a sequence of points that usually violate the non-
linear constraints, with the violations decreasing to

within a specified feasibility tolerance as the sequence
converges to a local optimum. GRG algorithms have
a simplex-like phase 1–phase 2 structure. Phase 1
begins with the given starting point and, if it is not
feasible, attempts to find a feasible point by minimiz-
ing the sum of constraint violations. If this effort ter-
minates with some constraints violated, the problem
is assumed to be infeasible. However, this local opti-
mum of the phase 1 objective may not be global, so a
feasible point may exist. If a feasible point is found,
phase 2 uses it as its starting point, and proceeds to
minimize the true objective. Both phases consist of a
sequence of line searches, each of which produces a
feasible point with an objective value not worse (and
usually better) than its predecessor.
Several good commercially available implementa-

tions of GRG and SQP solvers exist; see Nash (1998)
for a review. As with any numerical-analysis software,
a local NLP solver can fail to find a local solution from
a specified starting point. The problem may be too
badly conditioned, badly scaled, or too large for the
solver, causing it to terminate at a point (feasible or
infeasible) that is not locally optimal. While the reli-
ability of the best current NLP solvers is quite high,
these difficulties occurred in our computational test-
ing, and we discuss this in more detail later.
Let L be a local NLP solver capable of solving

(1)–(4), and assume that L converges to a local opti-
mum for any starting point x0 ∈ S. Let L�x0� be the
locally optimal solution found by L starting from x0,
and let x∗i , i = 1�2� � � � �nloc be all the local optima
of the problem. The basin of attraction of the ith local
optimum relative to L, denoted by B�x∗i �, is the set
of all starting points in S from which the sequence
of points generated by L converges to x∗i : B�x

∗
i � =

!x0 � x0 ∈ S�L�x0�= x∗i ".
One measure of difficulty of a global optimization

problem with unique global solution x∗1 is the volume
of B�x∗1� divided by the volume of the rectangle, S,
the relative volume of B�x∗1�. The problem is trivial if
this relative volume is 1, as it is for convex programs,
and problem difficulty increases as this relative vol-
ume approaches zero.

3.3. Comparing Heuristic Search Methods and
Gradient-Based NLP Solvers

For smooth problems, the relative advantages of a
heuristic search method like ScS over a gradient-
based NLP solver are its ability to locate an approx-
imation to a good local solution (often the global
optimum), and the fact that it can handle discrete
variables. Gradient-based NLP solvers converge to
the “nearest” local solution, and have no facilities
for discrete variables, unless they are embedded in a
rounding heuristic or branch-and-bound method. Rel-
ative disadvantages of heuristic search methods are



Ugray et al.: Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization
INFORMS Journal on Computing 19(3), pp. 328–340, © 2007 INFORMS 331

their limited accuracy, and their weak abilities to deal
with equality constraints (more generally, narrow fea-
sible regions). They find it difficult to satisfy many
nonlinear constraints to high accuracy, but this is a
strength of gradient-based NLP solvers. Search meth-
ods also require an excessive number of iterations to
find approximations to local or global optima accurate
to more than two or three significant figures, while
gradient-based solvers usually achieve four- to eight-
digit accuracy rapidly.
The motivation for combining search and gradient-

based solvers in a multistart procedure is to achieve
the advantages of both while avoiding the disadvan-
tages of either. Surprisingly, we have been unable to
locate any published efforts in this direction, besides
the Frontline extended MLSL method discussed in
Section 2.

3.4. The OQNLP Algorithm
A pseudo-code description of the simplest OQNLP
algorithm follows:

INITIALIZATION
Read_Problem_Parameters (n, p, m1, m2, bounds,
starting point);

Setup_OQNLP and OptQuest_parameters and Op-
tions (problem size, stage 1 and 2 iteration limits,
population size, accuracy, names and types of vari-
ables and constraints, bounds on variables and con-
straints);

Initialize_OptQuest_Population;
Stage 1 iterations= Stage 2 iterations= 0;

STAGE 1: INITIAL OPTQUEST ITERATIONS
AND FIRST L CALL
WHILE (Stage 1 iterations< Stage 1 iteration limit)
DO {

Get (trial solution from OptQuest);
Evaluate (objective and nonlinear constraint
values at trial solution,);

Put (trial solution, objective and constraint
values to OptQuest database);

Stage 1 iterations= Stage 1 iterations+ 1;
} ENDDO

Get_Best_Point_from_OptQuest_database (starting
point);

Call_L (starting point, local solution);
Threshold= default value;
IF (local solution feasible) THEN {

Insert local solution in linked list;
Penalty weights=max(positive lower limit,
absolute multiplier values from L call);

threshold= P1value of local solution; }
Penalty weights=max(positive lower limit,
absolute multiplier values from L call)

STAGE 2: MAIN ITERATIVE LOOP
WHILE (Stage 2 iterations< Stage 2 iteration limit)
DO {

Get (trial solution from OptQuest);
Evaluate (objective and nonlinear constraint
values at trial solution,);

Put (trial solution, objective and constraint
values to OptQuest database);

Calculate_Penalty_Function (trial solution,
Penalty weights, P1);

IF (distance and merit filter criteria are
satisfied) THEN {
Replace threshold with current P1 value;
Call_L (trial solution, local solution);
IF (local solution feasible) THEN {

Insert local solution in linked list;
Penalty weights=max(positive lower
limit, absolute multiplier values

from L call); }
}

ELSE IF (P1 > threshold for waitcycle
consecutive iterations) {increase threshold}

Stage 2 iterations= Stage 2 iterations+ 1;
} ENDDO

After initialization, there are two main stages. In
the “initial OptQuest iterations” stage, the objective
and constraint values at all trial points generated by
the initial OptQuest population (including the pop-
ulation points themselves) are evaluated, and these
values are returned to OptQuest, which computes its
penalty function, POQ, at each point. The point with
the best POQ value is selected, and L is started from
this point. If there are any discrete variables y, they
are fixed at their current values during the L solution
process. Figure D in the Online Supplement shows a
graph of these trial points for a two variable uncon-
strained problem. In general, they are scattered within
the rectangle defined by the bounds on the variables,
so choosing the best corresponds to performing a
coarse search over this rectangle. If the best point falls
inside the basin of attraction of the global optimum
relative to L (as it often does), then if the subsequent
L call is successful, it will find a global optimum.
This call also determines optimal Lagrange multiplier
values u∗ for the constraints. These are used to deter-
mine initial values for the penalty weights wi satisfy-
ing (6), which are used in the exact penalty function,
P1, defined in (5). All local optima found are stored in
a linked list, along with the associated Lagrange mul-
tipliers and objective values. Whenever a new local
optimum is found, the penalty weights are updated
so that (6) is satisfied over all known local optima.
The main iterative loop of stage 2 obtains trial

points from OptQuest, and starts L from the subset
of these points determined by two filters. The dis-
tance filter helps insure that these starting points are



Ugray et al.: Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization
332 INFORMS Journal on Computing 19(3), pp. 328–340, © 2007 INFORMS

diverse, in the sense that they are not too close to any
previously found local solution. Its goal is to prevent
L from starting more than once within the basin of
attraction of any local optimum, so it plays the same
role as the rule in the MLSL algorithm of Section 2,
which does not start at a point if it is within a crit-
ical distance of a better point. When the final point
found by L is feasible, it is stored in a linked list,
ordered by its objective value, as is the Euclidean dis-
tance between it and the starting point that led to
it. If a local solution is located more than once, the
maximum of these distances, maxdist, is updated and
stored. For each trial point t, if the distance between t
and any local solution already found is less than
distfactor∗maxdist, L is not started from the point, and
we obtain the next trial solution from OptQuest.
This distance filter implicitly assumes that the

attraction basins are spherical, with radii at least
maxdist. The default value of distfactor is 0.75, and it
can be set to any positive value. As distfactor ap-
proaches zero, the filtering effect vanishes, as would
be appropriate if there were many closely spaced local
solutions. As it increases, the filtering effect increases
until eventually L is never started in stage 2. Its de-
fault value is chosen empirically to achieve a reason-
able compromise between these extremes.
The merit filter helps insure that the L starting

points have high quality, by not starting from can-
didate points whose exact penalty function value P1
in (5) is greater than a threshold. This threshold is set
initially to the P1 value of the best candidate point
found in the first stage of the algorithm. If trial points
are rejected by this test for more than waitcycle con-
secutive iterations, the threshold is increased by the
updating rule:

threshold← threshold+ threshfactor
∗ �1�0+ abs�threshold���

where the default value of threshfactor is 0.2 and that
for waitcycle is 20. The threshfactor value is selected
to provide a significant but not-too-large increase in
threshold, while the waitcycle value insures that these
increases happen often enough but not too often.
Using the default values of 200 stage 1 and 800 stage 2
candidate points, threshold can be increased in stage 2
at most 40 times. The additive 1.0 term is included
so that threshold increases by at least threshfactor when
its current value is near zero. When a trial point is
accepted by the merit filter, threshold is decreased by
setting it to the P1 value of that point.
The combined effect of these two filters is that L

is started at only a few percent of the OptQuest trial
points, yet global optimal solutions are found for
a very high percentage of the test problems. Some
insight is gained by examining Figure 1, which shows

1.6071

–0.2155
–1.0316

–0.2155

1.6071

0.2

–0.2

0.4

–0.4

0.6

–0.6

0.8

–0.8

1.0

–1.0

–2.0 –1.5 –1.0 –0.5 0.5 1.0 1.5 2.0

–1.0316

0
00

Figure 1 Local Optima and Ten L Starting Points for Six-Hump Camel-
back Function

the stationary point at the origin and the six local
minima of the two-variable six-hump camelback func-
tion (Dixon and Szegö 1975) as dark squares, labeled
with their objective value. The ten points from which
OQNLP starts the local solver are shown as nine
white diamonds, plus the origin. The local minima
occur in pairs with equal objective value, located sym-
metrically about the origin. There were 144 trial points
generated in the “initial OptQuest iterations” stage,
and these, plus the ten points in the initial population,
are shown in Figure D in the Online Supplement. The
best of these 154 points is the population point �0�0�,
so this becomes the first starting point for the local
solver. This happens to be a stationary point of F , so it
satisfies the optimality test (that the norm of the gra-
dient of the objective be less than the optimality toler-
ance), and the local solver terminates there. The next
local solver start is at iteration 201, and this locates the
global optimum at �0�0898�−0�7127�, which is located
twice. The other global optimum at �−0�0898�0�7127�
is found first at iteration 268, and is located six times.
The limit on total OQNLP iterations in this run was

1,000. L was started at only nine of the 846 OptQuest
trial points generated in the main iterative loop of
stage 2. All but two of the starting points are in the
basin of attraction of one of the two global optima.
This is mainly due to the merit filter. In particular, the
threshold values are always less than 1.6071, so no
starts are ever made in the basin of attraction of the
two local optima with this objective value. The merit
filter alone rejected 498 points, the distance filter alone
57, and both rejected 281.
Figure 2 illustrates the dynamics of the merit-filter-

ing process for iterations 155 to 407 of this problem,
displaying the objective values for the trial points as
white diamonds, and the threshold values as dark
lines. All objective values greater than 2.0 are set
to 2.0.
The initial threshold value is zero, and it is raised

twice to a level of 0.44 at iteration 201, where the



Ugray et al.: Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization
INFORMS Journal on Computing 19(3), pp. 328–340, © 2007 INFORMS 333

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

2.0

150 200 250 300 350 400

Figure 2 Objective and Threshold Values for Six-Hump Camelback Function for Iterations 155 to 407

trial-point objective value of −0�29 falls below it. L
is then started and locates the global optimum at
�0�0898�−0�7127�, and the threshold is reset to −0�29.
This cycle then repeats. Nine of the ten L starts are
made in the 252 iterations shown in the graph. In
this span, there are 12 points where the merit filter
allows a start and the threshold is decreased, but L is
not started at three of these because the distance filter
rejects them.
Figure 3 shows the same information for iterations

408 to 1,000. There is only one L start in this span. This
is not due to a lack of high-quality trial points: there
are more good points than previously, many with val-
ues near or equal to −1�0310 (the global minimum is
−1�0316), and the merit threshold is usually −1�0310
as well. Every time this threshold is raised, the merit

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

2.0

507 607 707 807 907407

Figure 3 Objective and Threshold Values for Six-Hump Camelback Function for Iterations 408 to 1,000

filter accepts one of the next trial points, but 51 of the
52 accepted points are too near one of the two global
optima, and they are rejected by the distance filter.
This simple example illustrates a number of impor-

tant points:
1. Setting the bounds on the continuous or discrete

variables to be too large in magnitude is likely to
slow the OQNLP algorithm (or any search algorithm)
and may lead to a poorer final solution. In the above
example, if the variable bounds had been (−2�2)
rather than (10�10), the trial points generated by the
initial population would have had much lower objec-
tive values. OptQuest can overcome this when the
initial population is updated.
2. L found a highly accurate approximation to the

global solution of this unconstrained problem at its



Ugray et al.: Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization
334 INFORMS Journal on Computing 19(3), pp. 328–340, © 2007 INFORMS

second call. OptQuest alone would have taken many
more iterations to achieve this accuracy.
3. The best trial point generated by the initial pop-

ulation may not have as good an objective value as
those generated from the second or succeeding ones,
especially if the variable bounds are too large. Using
the best “first-generation” point as the initial L start-
ing point may not lead to as good a local solution
as if some “second-generation” points had been con-
sidered. For this reason our base-case computational
results use a first stage of 200 OptQuest trial points,
which in this example would include all 144 first-
generation points and 56 from the second generation.

3.5. Filtering Logic for Problems with Discrete
Variables

The filtering logic described above must be extended
when there are discrete variables (the y variables in
the problem statement (1)–(4)). There are two distinct
modes: (1) Optquest is aware of both the x and y vari-
ables and all problem constraints, and (2) Optquest
is aware only of the y variables and the constraints
involving y only. Tests thus far do not show conclu-
sively that one of these is preferred, so both modes
are described and comparisons thus far are presented
later.
In mode (1), when a trial point �xt� yt� provided by

OptQuest passes the two filtering tests and is passed
to the local solver L, xt acts as a starting point and
is changed by L, but the yt values are fixed and are
not changed. Each new set of yt values defines a dif-
ferent NLP for L to solve, say NLP(yt), with its own
set of local minima in x space, so both filters must
be made specific to NLP(yt). For the distance filter, it
is irrelevant if xt is close to any local minima (in x
space) previously found that correspond to problems
NLP(y) with y different from yt . Hence the distance
filter is based on the distance from xt to local minima
of NLP(yt) only. Similarly, the tests and threshold val-
ues in the merit filter must be specific to the problem
NLP(yt) currently being solved. However, the weights
w in the exact penalty function P1�x�y�w� used in the
merit filter are based on the maximum absolute mul-
tipliers over all local optima for all vectors yt , because
these weights are large enough to ensure that this
function is exact for all problems NLP(y).
Therefore, in stage 2 of the algorithm, the exact pen-

alty function, P1�xt� yt�w�, is calculated at each trial
point �xt� yt�, and L is started at �xt� yt� if P1 is smaller
than the current threshold for NLP(yt). This thresh-
old is initialized to +
, so if the values yt have not
occurred in a previous stage 2 trial point, L will be
called at this point. This leads to many more local
solver calls in problems with discrete variables, as we
show later in the computational-results sections.

In mode (2), Optquest presents candidate y vectors
only to L, which are fixed while L finds correspond-
ing (locally) optimal x values. The starting values for
x can be chosen to minimize computational effort. We
are experimenting with an option that obtains all pos-
sible trial points for the current population, sorts them
in terms of their distance from each other, and calls
L in that sorted order, starting each call of L from
the previous optimum. It is expected that y’s that are
close to one another will have x’s with that prop-
erty, so the previous optimum will be a good starting
point.
In mode (2), there is no stage 1, and L must be

called at each y vector that has not been produced
previously. As a result, the local solver call where
the best value is found typically comes later than
with mode (1). On the other hand, OptQuest’s effort
is reduced since it processes a much smaller prob-
lem, and the information returned to it by the local
solver (the optimal objective value over the continu-
ous variables) is of much higher quality than in the
base case (the penalized objective value at OptQuest’s
trial point).
An important option involves the return of infor-

mation from the local solver to OptQuest, which
is absent in the above procedure, i.e., local solu-
tions found by the local solver are not returned to
OptQuest. Such solutions are generally of very high
quality, and might aid the search process if they were
incorporated into the OptQuest population, because
at least a subset would likely be retained there. How-
ever, this should be done so as to preserve the diver-
sity of the population.

4. Computational Results
The algorithm described in the previous section has
been implemented as a callable C-language function.
In this form, the user supplies a C function that evalu-
ates the objective and constraint functions, an optional
routine that evaluates their first partial derivatives
(finite-difference approximations are used otherwise),
and a calling program that supplies problem size,
bounds, an initial point, and invokes the algorithm.
Algorithm parameters and options all are set ini-
tially to default values, and any changes are speci-
fied in an options file. The local NLP solver is the
LSGRG2 implementation of Smith and Lasdon (1992).
We have also developed an interface between our C
implementation and the GAMS algebraic modeling
language (http://www.gams.com/), using C library
routines provided by GAMS Development Corpora-
tion. The user function routine is replaced by one that
calls the GAMS interpreter, and a special derivative
routine accesses and evaluates expressions developed
by GAMS for first derivatives of all nonlinear problem



Ugray et al.: Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization
INFORMS Journal on Computing 19(3), pp. 328–340, © 2007 INFORMS 335

Table 1 Floudas et al. (1999) Test Problem Set Characteristics

Max. Max. discrete Max. linear Max. nonlinear
Series Problems variables variables constraints constraints Problem type

EX2_1_x 14 24 0 10 0 Concave QP (min)
EX3_1_x 4 8 0 4 6 Quadratic obj and constraints
EX4_1_x 9 2 0 0 2 Obj or constraints polynomial
EX5_2_x 2 32 0 8 11 Bilinear-pooling
EX5_3_x 2 62 0 19 34 Distillation column sequencing
EX5_4_x 3 27 0 13 6 Heat exchanger network
EX6_1_x 4 12 0 3 6 Gibbs free energy min
EX6_2_x 10 9 0 3 0 Gibbs free energy min
EX7_2_x 4 8 0 3 12 Generalized geometric prog
EX7_3_x 6 17 0 10 11 Robust stability analysis
EX8_1_x 8 6 0 0 5 Small unconstrained, constrained
EX8_2_x 5 55 0 6 75 Batch plant design-uncertainty
EX8_3_x 14 141 0 43 65 Reactor network synthesis
EX8_4_x 8 62 0 0 40 Constrained least squares
EX8_5_x 6 6 0 2 2 Min tangent plane distance
EX8_6_1 N 3N − 6 0 0 0 Lennard-Jones energy min
EX8_6_2 N 3N − 6 0 0 0 Morse energy min
EX9_1_x 10 29 6 27 5 Bilevel LP
EX9_2_x 9 16 3 11 6 Bilevel QP
EX12_2_x 6 11 8 9 4 MINLP
EX14_1_x 9 10 0 4 17 Infinity norm solution of equations
EX14_2_x 9 7 0 1 10 Infinity norm solution of equations
Total: 142+ 2N

functions. GAMS identifies all linear terms in each
function, and supplies their coefficients separately,
thus identifying all linear constraints. This enables us
to invoke the OptQuest option that maps each trial
point into a point that satisfies the linear constraints.
The derivative information supplied by GAMS signif-
icantly enhances the performance of the local solver
since only nonconstant derivatives are re-evaluated,
and these are always available to full machine pre-
cision. As mentioned earlier, this GAMS version can
call any GAMS NLP solver.
For our computational experiments we used the

large set of global optimization test problems coded
in GAMS from Floudas et al. (1999). Table 1 shows
the characteristics of 142 individual and two groups
of problems.
Most problems arise from chemical engineering,

but some are from other sources. Most are small,
but a few have over 100 variables and a comparable
numbers of constraints, and 13 have both continu-
ous and discrete variables. Almost all of the problems
without discrete variables have local solutions dis-
tinct from the global solution, and the majority of
problems have constraints. Sometimes all constraints
are linear, as with the concave quadratic programs
of series EX2_1_x, but many problems have nonlin-
ear constraints, and these are often the source of the
nonconvexities. The best known objective value and
(in most cases) the corresponding variable values are
provided in Floudas et al. (1999). The symbol N in the

rows for the series EX8_6_1 and EX8_6_2 is the num-
ber of particles in a cluster whose equilibrium config-
uration is sought via potential-energy minimization.
(For more details on these problems see Section 4.2.)

4.1. Continuous Variables—The Base Case
This section describes results obtained when OQNLP
is applied to 128 of the problems in the Floudas
et al. (1999) test set with no discrete variables. A few
problems for which no GAMS NLP solver can find a
feasible solution in 800 solver calls are omitted. Com-
putations were performed on a DELL OptiPlex PC
with a 1.2 GHz Pentium IV processor and 261 Mbytes
of RAM, running under Windows 2000.
The options and main algorithm parameters used

are shown in Table 2 (see Section 3.4 for definitions).
The filter parameter values (waitcycle, threshfactor, dist-
factor) correspond to fairly tight filters, and these must
be loosened to solve some problems. The OptQuest
“use linear constraints” option, which projects trial
points onto the linear constraints, is not used be-
cause it is very time-consuming for larger problems.
SNOPT, an SQP implementation, was used for the
largest problems because many calls to the GRG
solvers CONOPT (Drud 1994) and LSGRG2 termi-
nate infeasible on these problems. The 8_3_x problems
include many “pooling” constraints, which have bilin-
ear terms. In almost all these terminations, the GRG
solvers find a local minimum of the phase 1 objec-
tive. SNOPT has no phase 1, and never terminates
infeasible.



Ugray et al.: Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization
336 INFORMS Journal on Computing 19(3), pp. 328–340, © 2007 INFORMS

Table 2 Base Case OQNLP and OptQuestGRG Parameters and
Options Used

Total iterations= 1�000
Stage 1 iterations= 200
Waitcycle= 20
Threshfactor= 0�2
Distfactor= 0�75
Use linear constraints= no
OptQuest search type= boundary
Boundary search parameter= 0�5
NLP solver= LSGRG2, except SNOPT for 110 to 141 range

Table 3 shows outcomes and average-effort statis-
tics for 128 of the Floudas et al. (1999) collection of test
problems with continuous variables only, sorted into
six groups by number of variables. Geometric rather
than arithmetic means are used to reduce the effects
of outliers: function calls, iterations, and times for
the larger problem sets typically include a few prob-
lems with values much larger than all others. Com-
putational effort is measured by OptQuest iterations,
solver calls, function calls (each function call evalu-
ates the objective and all constraint functions), and
computation time. The three “to best” columns show
the effort required to find the best OQNLP objective
value. Function calls are not available for the largest
problems because the SNOPT interface does not yet
make them available.
Since all problems have known solutions, we de-

fine “failures” as problems with a solution gap of
more than 1%. This gap is the percentage difference
between the best feasible OQNLP objective value,
fOQNLP, and the best known feasible objective value
fbest, defined for minimization problems as gap =
100�foqnlp− fbest�/�1+ �fbest��, and the negative of the
above for maximization, so positive gaps indicate that
the best known solution was not reached. Nine of the
128 problems failed to achieve gaps smaller than 1%,
with gaps ranging from 2.2% to 80%. All these are
solved with more iterations or by loosening the filters.
Percentage gaps for almost all 119 “solved” problems
are less than 10−4, and the largest gap among solved
problems is 0.37%.

Table 3 Results and Effort Statistics for 128 Continuous-Variable Floudas et al. (1999) Problems

Variable Iterations Solver Solver Locals Function calls Function Time to Total First Second
range Problems Variables Constraints to best calls to calls found to best calls best time Failed L call L call

1 to 4 32 2�5 1�7 206.3 1.1 7�5 1�9 263�9 2�158�0 0.1 0�5 1 27 3
4 to 7 31 5�5 5�7 214.4 1.3 5�8 1�9 381�5 4�766�7 0.2 0�6 0 22 6
8 to 12 21 9�4 8�1 238.2 1.5 13�2 3�0 575�6 19�698�0 0.1 0�8 3 10 4
13 to 20 18 15�9 11�7 303.5 2.4 7�4 2�6 968�2 5�211�9 0.3 0�7 4 8 1
22 to 78 13 37�9 27�6 259.6 2.1 14�1 3�1 1�562�4 23�077�9 0.6 2�5 1 5 3
110 to 141 13 116�4 80�1 305.0 2.7 23�7 22�7 NA NA 6.6 64�1 0 7 2

Total/avg. 128 251.3 1.8 10�5 3�5 537�9 7�190�9 0.4 1�7 9 80 19

Computational effort needed to achieve these re-
sults is quite low, and increases slowly with problem
size, except for the geometric mean solution time for
the largest problems. The best OQNLP value is also
found very early: in the first solver call in 80 of the
118 solved problems, and the second call in 19 more.
This shows that, for these test problems, stage 1 of
OQNLP is very effective in finding a point in the
basin of attraction of the global optimum. The ratio of
the “to best” effort to total effort is also small. For iter-
ations, since there are always 200 stage 1 iterations,
we subtract 200 before computing the ratio, giving
51�3/800 = 0�06. The solver call ratio is 0.17 and the
time ratio 0.23. This implies that, for these problems,
a criterion that stops OQNLP when the fractional
change in the best feasible objective value found thus
far is below a small tolerance for some (reasonably
large) number of successive iterations would rarely
terminate the algorithm before the best solution was
found. The ratio of total solver calls to locals found, a
measure of filter efficiency, varies from 3 to 5, and is
nearly 1 for the largest problems.
Table 4 shows results obtained in solving the nine

“failed” problems with looser filters and an OptQuest
boundary search parameter of 1. Seven of these nine,
the 2_1_x series, are quadratic programs (QPs) with
concave objectives (to be minimized), so each has an
optimal extreme-point solution, and every extreme
point is a local solution. The base case and new
parameter values are in Table 5.
The looser merit filter increases its threshold every

ten iterations, replacing the old value by old value+
1�0×�1+�old value��. The looser distance filter rejects a
trial solution if its distance from any previously found
local solution is less than 0�1×maxdist, where maxdist
is the largest distance traveled to reach that solution.
A search parameter of 1 causes more OptQuest trial
points to have values on the boundary of the rectangle
defined by the variable bounds, which helps solve the
seven concave QPs.
Eight of the nine “unsolved” problems are solved

with these new parameters, and the other, EX14_1_8,
achieves a gap of 1.15%. It is solved by using 1,000
stage 1 iterations and 5,000 total, with all other param-
eters as in the base case.



Ugray et al.: Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization
INFORMS Journal on Computing 19(3), pp. 328–340, © 2007 INFORMS 337

Table 4 Solving Nine “Failed” Problems with Looser Filters and Boundary Parameter= 1

Iterations Solver calls Total solver Base-case Locals Function calls Total Time Total
Problem name Variables Constraints to best to best calls solver calls found to best function calls to best time Gap

EX14_1_8 3 4 338 21 122 17 2 38�141 1�218�680 0�49 2�25 1�15
EX9_2_5 8 7 344 2 6 45 3 690 2�832 0�21 0�6 0
EX2_1_6 10 5 203 3 107 7 17 389 138�749 0�2 1�38 0
EX2_1_9 10 1 201 1 111 66 39 252 342�345 0�16 1�45 0
EX2_1_7_1 20 10 279 8 27 2 19 5�051 60�043 0�39 1�25 0
EX2_1_7_3 20 10 269 4 65 22 36 1�321 286�213 0�3 1�92 0
EX2_1_7_4 20 10 253 6 29 4 9 3�676 83�989 0�39 1�41 0
EX2_1_7_5 20 10 254 5 29 3 15 2�620 71�004 0�33 1�34 0
EX2_1_8 24 10 226 3 120 8 25 981 1�071�730 0�29 2�87 0

Means(geom) 258�6 4�1 48�7 10�5 12�8 1�760�7 137�876�8 0�3 1�5

Table 5 Base Case and Loosened Filter Parameter Values

Parameter Base-case value Looser value

Waitcycle 20 10
Threshold_factor 0�2 1�0
Distance_factor 0�75 0�1
Boundary search parameter 0�5 1�0

Comparing the “total solver calls” and “base-case
solver calls” columns shows that the new parameters
represent a substantial loosening of both filters. The
looser filters result in many more solver calls in all but
problem 9_2_5, and the geometric mean solver calls
is 48.7 with the loose filters vs. 10.5 with the tighter
ones. The behavior of 9_2_5 is surprising (six solver
calls with loose filters versus 45 with tighter ones), but
the run with looser filters finds the global minimum
at iteration 344, and after that its merit thresholds and
set of local solutions differ from those of the base-
case run.
Table 6 shows the geometric performance means

and totals obtained from solving the 14 concave QP
problems with base-case parameters, with and with-
out the OptQuest “use linear constraints” option,
which maps each trial point into a nearest point fea-
sible for the linear constraints. Since these are linearly
constrained problems, invoking this option guaran-
tees that all trial points are feasible.
Clearly, this option helps: there are roughly twice

as many solver calls on average when using it, and
only two failures, vs. seven in the base case. The gaps
for the two unsolved problems (2_1_7_5 and 2_1_9)
are between 1% and 3.5% in both cases. However,
this option increases run times here by about a factor
of 30, so it is currently off by default.

Table 6 Solving Concave QP Problems With and Without “Use Linear Constraints”

Iterations Solver calls Total Locals Fcn calls Total fcn Time Total
Case to best to best solver calls found to best calls to best time Failed

No use 284.8 2.3 6�6 3.7 643.8 3,875.1 0.3 0�6 7
Use 247.1 2.1 12�1 3.1 437.7 3,827.6 6.9 19�0 2

4.2. The Lennard-Jones and Morse
Energy-Minimization Problems

The Floudas et al. (1999) set of test problems includes
two GAMS models that choose the locations of a clus-
ter of N particles to minimize the potential energy of
the cluster, using two different potential energy func-
tions, called Lennard-Jones and Morse. The decision
variables are the �x�y� z� coordinates of each parti-
cle. Particle 1 is located at the origin, and three posi-
tion components of particles 2 and 3 are fixed, so
each family of problems has 3N − 6 variables. These
problems have many local minima, and their number
increases rapidly with problem size, so they constitute
a good test for global optimization algorithms.
Results of applying OQNLP to 14 of these prob-

lems, using 200 stage 1 and 1,000 total iterations,
are shown in Tables 7 and 8. Each problem set was
solved with LSGRG2 and CONOPT. These results
use CONOPT for the Lennard-Jones problems and
LSGRG2 for the Morse, because they provide slightly
better results, illustrating the value of being able to
call several solvers. Because of the many distinct
local minima, the number of local minima found is
equal to the number of solver calls for the three
largest Lennard-Jones problems and for all the Morse
problems.
The Lennard-Jones problems are the more difficult

of the two. The three largest problems have gaps of
roughly 1% to 2%, using the looser filter parameters
in Table 5. The default filter parameters led to positive
gaps for the last three problems totaling 7.8%, while
this sum in Table 7 is 3.8%. The objective approaches
infinity as the distance between any two particles
approaches zero, so its unconstrained minimization
for N = 20 leads to about 50,000 domain violations



Ugray et al.: Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization
338 INFORMS Journal on Computing 19(3), pp. 328–340, © 2007 INFORMS

Table 7 Solving Six Lennard-Jones Problems Using CONOPT and Loose Filters

Solver calls Total Locals Time
Problem name Variables Constraints to best solver calls found to best Total Gap, %

EX8_6_1_5 9 10 1 152 39 1�09 21�83 0.00
EX8_6_1_10 24 45 21 130 114 18�56 68�34 0.00
EX8_6_1_15 39 105 6 104 100 13�63 165�09 0.00
EX8_6_1_20 54 190 67 118 118 257�62 396�21 1.12
EX8_6_1_25 69 300 42 94 94 325�82 730�68 1.84
EX8_6_1_30 84 435 16 59 59 134�35 434�56 0.88

Table 8 Solving Eight Morse Problems Using LSGRG2 and Default
Parameters

Solver Total
Problem calls solver Locals Time to Total
name Variables to best calls found best time Gap

EX8_6_2_5 9 1 5 5 0�23 0�61 0.0000
EX8_6_2_10 24 1 15 15 0�57 4�44 0.0000
EX8_6_2_15 39 1 6 6 1�41 6�43 0.0000
EX8_6_2_20 54 2 43 43 4�20 51�20 0.0000
EX8_6_2_25 69 4 20 20 13�44 58�38 0.0000
EX8_6_2_30 84 17 43 43 68�56 160�19 0.0000
EX8_6_2_40 114 7 33 33 66�29 273�91 0.0000
EX8_6_2_50 144 20 25 25 337�20 403�96 0.1251

(either divide by zero or integer power overflow), and
this number grows rapidly with N . Hence we added
constraints lower bounding this distance by 0.1 for all
distinct pairs of points, and the number of these con-
straints is shown in the table. None are active at the
best solution found.
Table 8 shows the Morse potential results using the

LSGRG2 solver and the default OQNLP parameters
shown in Table 2. The objective here has no singu-
larities, so there are no difficulties with domain vio-
lations, and the only constraints are variable bounds.
All problems are solved to very small gaps except the
largest (144 variables), which has a gap of 0.125%.
The number of solver calls is much smaller than for
the Lennard-Jones problems, because the filters are
much tighter. Each call leads to a different local opti-
mum. The largest problem is solved to a gap less than
10−4% with 5,000 total and 1,000 stage 1 iterations
and the same filter parameters. This run terminated
because the 3,000-second time limit was exceeded,
took 4,083 iterations, and found 210 distinct local
optima in 210 solver calls, compared to only 25 in the
base case.

Table 9 Solution Statistics for 13 Problems with Discrete Variables

Discrete Options and Iterations L calls Total L Fcn calls Total Time Total
var mode parameters to best to best calls to best fcn calls to best time Failures

Discrete only Default 10�2 10�2 20�1 2�065�8 5�794�1 0.8 1�5 0
All Default 261�7 4�0 32�1 1�065�7 25�022�2 0.3 0�8 7
All �1�000�5�000� 1�551�9 12 89�1 10�196�8 224�025�7 0.8 3�7 1
All Default, use 272�4 3�6 115�8 1�178�0 88�983�0 9.9 26�1 0

4.3. Problems with Discrete Variables
There are 11 MINLP problems in the Floudas et al.
(1999) test set, with the total number of variables
ranging from three to 29 and the number of binary
variables ranging from one to eight. Two of these,
EX12_2_3 and EX12_2_4, had been reformulated so
that all binaries appeared linearly, and we restored
them to their original state where the binaries appear
nonlinearly. OQNLP allows such representations,
while the other GAMS MINLP solvers do not. The
final test set contains 13 problems. These are far
too small to yield meaningful inferences about the
power of OQNLP on problems of practical size, but
allow preliminary testing of the two MINLP modes
described in Section 3.5. The geometric means of some
measures of computational outcomes and effort for
both modes are shown in Table 9, using the LSGRG2
NLP solver.
The first table row is for mode (2), where OptQuest

manipulates only the discrete variables. Each NLP
problem was “cold started” from the same initial
point in these runs, so the number of function calls
could be reduced substantially by warm starts. All
runs are terminated by OptQuest after the small num-
ber of possible binary-variable combinations have
been completely enumerated. The optimal solution is
found on average about midway through the solution
process, but we expect that this will occur earlier
as the number of discrete variables increases. The
OptQuest logic requires that at least one population
of binary solutions be evaluated before any learning
can occur, and the average number of solver calls to
find the best solution here is about equal to the pop-
ulation size of ten.
The last three rows of Table 9 show results for

mode (1), where OptQuest manipulates both binary
and continuous variables. In rows 2 and 3, we do



Ugray et al.: Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization
INFORMS Journal on Computing 19(3), pp. 328–340, © 2007 INFORMS 339

Table 10 Average Solver Calls vs. Number of Binary Variables

Binaries 1 3 4 5 6 8
Problems 1 3 2 1 4 2
Discretes only 2 7 12�5 27 52�5 81
All 52 35�7 17�5 109 195�5 551�5

not require trial points to satisfy linear constraints,
while in row 4 we do. Without using linear con-
straints, the default number of stage 1 and total iter-
ations of �200�1�000�, are not enough to find the best
solution for about seven of the 13 problems. This is
because many OptQuest trial points have the same
values for the binary variables but different values
for the continuous variables, so complete enumera-
tion takes far longer than in mode (2). However, 1,000
stage 1 and 5,000 total iterations solve all but one
problem (its gap is 9.4%), and the ratio (solver calls
to best)/(total solver calls) of about 1/9 is favorably
small. Row 4 shows that, if trial points are required
to satisfy linear constraints, all problems are solved in
1,000 total iterations. This is because these problems
have mostly linear constraints (geometric mean of lin-
ear constraints is 9.1 and of total constraints is 9.9),
so the projected trial points tend to contain an opti-
mal set of binary variable values earlier, after only 3.6
solver calls on average. However, solving the MILPs,
which map trial points into nearest points that sat-
isfy the linear constraints, increases total solution time
by a factor of about 30 (compare the times in rows
2 and 4).
Table 10 shows that total solver calls increase

quickly with the number of binary variables for
the two discrete-variable modes, especially the “all”
mode. When more than one problem has the same
number of binaries, averages over those problems are
given. The values for the “Discretes only” mode are
the number of feasible binary vectors, averaged over
the number of problems shown.

5. Summary and Future Research
The results of Section 4 show that OQNLP is a
promising approach for smooth nonconvex NLPs
with continuous variables. It solves all 142 of the
test problems with no discrete variables with very
reasonable solution effort. While there is no guar-
antee of optimality and no “gap” is available, it
can be combined with other algorithms that pro-
vide this information, e.g., LGO (Pinter 2004) or
BARON (Tawarmalani and Sahinidis 2002). Informa-
tion on these solvers is also available at http://www.
gamsworld.org/(link to global world and then to global
solvers). The lower bounds provided by these proce-
dures can be used to estimate the gap for the OQNLP
solution, and the solution produced by any algorithm
can be used as a warm start for any other.

Future research includes enhancing the filter logic.
As described above, the filters needed to be loosened
to solve nine of the Floudas et al. (1999) test problems,
and this loosening could be done automatically. The
merit filter parameter threshfactor (new threshold =
threshfactor× �1+ old threshold�� could be calculated
dynamically. Each time a penalty value is above
the threshold, calculate the value of threshfactor that
would cause the new threshold to equal the penalty
value. If this happens for waitcycle consecutive itera-
tions, set threshfactor to the smallest of these values, so
the new threshold would have just accepted the low-
est of the penalty values. Similar logic can be devel-
oped for the distance filter, reducing a basin radius
maxdist if that basin’s distance filter rejects trial points
for waitcycle consecutive iterations.
Also, the current distance-filter logic allows over-

lap of the spherical approximations to the attraction
basins. The true basins can have no points in com-
mon, so we can impose this condition on the spheres.
If the spherical model basins for any 2 local solu-
tions xi and xj have radii ri and rj , these must satisfy

ri+ rj ≤ d�i� j��

where d�i� j� is the Euclidean distance between xi and
xj . If this inequality is violated, the radii ri and rj can
be reduced by the same scale factor so that it holds as
equality. We plan to test these options soon.
Another important aspect is the communication

of locally optimal solutions back to OptQuest, to
improve its search process. These solutions usually
have substantially lower penalty values than do typi-
cal OptQuest trial points, so they are likely ultimately
to be included in OptQuest’s population. However,
their penalty values often become the merit-filter
thresholds, causing most other trial points to be
rejected. Also, the local optima and their nearby “chil-
dren” will be rejected by the distance filter. We have
seen these effects in preliminary tests.
NLP algorithms can fail by failing to find a feasible

point in cases where the problem instance is feasi-
ble. With GRG algorithms, this usually happens when
phase 1 terminates at a local optimum of the phase 1
objective. OQNLP can be applied to such problems,
if they are reformulated by dropping the true objec-
tive, adding deviation variables into all constraints,
and minimizing the sum of these deviation variables.
This approach could greatly improve the ability of
existing NLP solvers to diagnose infeasibility. More
generally, OQNLP can improve NLP solver reliability
by starting the solver from as many points as desired,
while insuring that these points balance diversity and
quality.
The performance of OQNLP in solving MINLPs is

less clear, because the 13 MINLP test problems used



Ugray et al.: Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization
340 INFORMS Journal on Computing 19(3), pp. 328–340, © 2007 INFORMS

here are so small. More extensive testing is needed,
which should clarify the relative merits of the two
MINLP “modes” discussed in Section 4.3. If OptQuest
manipulates only the discrete variables, then all trial
points generated by the current population may be
generated at once, and the solver calls at these points
may be done in any order. The points can be sorted by
increasing distance from their nearest neighbor, and
each NLP call can be started from the previous opti-
mum. The NLPs can also be solved in parallel.
Finally, comparative studies of OQNLP and other

global and MINLP solvers are needed. This testing
is facilitated by the existing GAMS interfaces for
BARON, LGO, DICOPT, and SBB. The “MINLP
World” and “Global World” websites developed
by GAMS Development Corporation (http://www.
gamsworld.org/) provide solver information and test
problems with known solutions.

Acknowledgments
This research was partially supported by the Ministerio
de Educación y Ciencia of Spain under Reference Code
TIN2006-02696.

References
Dixon, L., G. P. Szegő. 1975. Towards global optimization. Proc.

Workshop at the University of Cagliari, Italy, North Holland,
Amsterdam, The Netherlands.

Drud, A. 1994. CONOPT—A large-scale GRG-code. ORSA J. Com-
put. 6 207–218.

Edgar, T. F., D. M. Himmelblau, L. S. Lasdon. 2001. Optimization of
Chemical Processes. McGraw-Hill, New York.

Floudas, C. A., P. M. Pardalos, C. S. Adjiman, W. R. Esposito,
Z. Gumus, S. T. Harding, J. L. Klepeis, C. A. Meyer, C. A.
Schweiger. 1999. Handbook of Test Problems for Local and Global
Optimization. Kluwer Academic Publishers, Boston, MA.

Glover, F. 1998. A template for scatter search and path relinking.
J.-K. Hao, E. Lutton, E. Ronald, M. Schoenauer, D. Snyers, eds.
Artificial Evolution, Lecture Notes in Computer Science, Vol. 1363.
Springer Verlag, New York, 13–54.

Laguna, M., R. Marti. 2002. The OptQuest callable library. S. Voss,
D. Woodruff, eds. Optimization Software Class Libraries. Kluwer
Academic Publishers, Boston, MA, 193–218.

Laguna, M., R. Marti. 2003. Scatter Search: Methodology and Imple-
mentations in C. Kluwer Academic Publishers, Boston, MA.

Locatelli, M., F. Schoen. 1999. Random linkage: A family of accep-
tance/rejection algorithms for global optimization. Math. Pro-
gramming 85 379–396.

Murtagh, B. A., M. A. Saunders. 1982. A projected Lagrangian algo-
rithm and its implementation for sparse nonlinear constraints.
Math. Program. Study 16 84–117.

Nash, S. G. 1998. Nonlinear programming. OR/MS Today 25 36–45.
Nash, S. G., A. Sofer. 1996. Linear and Nonlinear Programming.

McGraw-Hill, New York.
Nocedal, J., S. J. Wright. 1999. Numerical Optimization. Springer

Series in Operations Research, New York.
Pinter, J. D. 2004. Computational Global Optimization in Nonlinear Sys-

tems. An Interactive Tutorial. Lionheart Publishing, Atlanta, GA.
Rinnooy Kan, A. H. G., G. T. Timmer. 1987a. Stochastic global opti-

mization methods; part I: Clustering methods. Math. Program-
ming 37 27–56.

Rinnooy Kan, A. H. G., G. T. Timmer. 1987b. Stochastic global opti-
mization methods; part II: Multi level methods.Math. Program-
ming 37 57–78.

Smith, S., L. Lasdon. 1992. Solving large sparse nonlinear programs
using GRG. ORSA J. Comput. 4 3–15.

Tawarmalani, M., N. Sahinidis. 2002. Convexification and Global Opti-
mization in Continuous and Mixed-Integer Nonlinear Programming.
Kluwer Academic Publishers, Boston, MA.


